

Hearing on SB 395 Allowing the exercise of eminent domain for the purpose of conducting carbon dioxide in pipes.

Eugene Holubnyak, Chris Steincamp, Jennifer Hollenbach, and Francsizek Hasiuk

Figure 1: CCUS in Kansas

Figure 2: Kansas Oil Production is Falling

Basin	EOR Potential (M barrels)	Net CO ₂ Demand (MMT)	Direct Jobs Created
Illinois-Indiana	500	160-250	1550-3100
Ohio	500	190-300	1550-3100
Michigan	250	80-130	800-1800
Kansas	750	240-370	2300-4600

(Crabtree, 2012)

Figure 3. Numerous Sites for EOR in Kansas

(KGS, 2018)

	Injection Rate (M ton/yr)	CO ₂ Storage (M ton)	Primary and Secondary (M barrel)	Extra Oil Production (M barrel)	KGS Study
Shuck	0.4	1.5	7.9	3.6	DE-FE0002056
Cutter	0.5	1.3	5.4	2.8	DE-FE0002056
N Eubank	0.6	1.5	7.4	4.6	DE-FE0002056
Pleasant Prairie	0.3	0.5	4.7	2.2	DE-FE0002056
Hall-Gurney	1	11.3	62.5	26.8	DE·AC26-00BC15124 and Pilot C12 Energy
Trapp	0.5	4.3	31.3	10.3	KGS reports
Wellington	0.6	2.2	16.2	5.3	DE-FE0002056 and Pilot
Totals	3.9	22.8	135.4	55.7	(KCS 2018)

Figure 4:

New Projects announced after 45Q Tax Credit Expansion

Figure 5: Many Potential Pipeline Routes Cross Kansas

Figure 6: Kansas can Become a CCUS Hub

- Kansas can become a CCUS hub with multiple businesses and communities benefiting from this technological breakthrough
 - Petroleum, chemicals, cement, power generation
 - Rural economic development
- Legislation is required to...
 - Facilitate capture, transportation, injection and storage as a public utility
 - Allow for eminent domain to be used for pipeline right-of-way and pooling of pore space
- Streamlining EPA UIC Class VI well permit process
 - State primacy would further support development of commercial-scale CCS
 - North Dakota has primacy, Louisiana is pursuing primacy

Cushing is the North American Oil Hub, Who will be the CO₂ hub?

Figure 7: Current CO₂ Pipelines are Limited

Geological and natural gas processing sources are declining

Source: Advanced Resources International, Inc., based on Oil and Gas Journal, 2014 and industry sources.

136

300

17

3.5

5

12

2.8

0.7

45Q Tax Credits are a Gamechanger

45Q tax credits make CCUS projects economically feasible

 Up to \$35/tonne for EOR and \$50/tonne for saline aquifer storage for CO₂ injected and stored

Kansas operators are well-positioned

- Kansas candidate oil fields have been delineated
- Within pathway of possible large-scale CO₂ pipeline system

CO₂ captured in NE and KS ethanol plants could be transported to Kansas oil fields cheaply - \$14 per tonne (\$0.75/mcf)

 Kansas oil production could *increase by 28% (10 million BO/yr)* through EOR

Low Carbon Fuel Standards

• California, Oregon, ...

What tax credits could be captured?

Hypothetical Scenario

- Construction in 2020, injection in 2022
- Tax credits
 - \$33/tonne CO₂ stored (for EOR) over 12-yr period
 - \$47/tonne for saline storage

	Kansas Ethanol Plant	Kansas Oil Field	Large Pipeline to Kansas
CO ₂ Injection Volume (Mt/yr)	0.15	0.5	4.3
Annual Tax Credits	\$5M	\$17M	\$142M
12-years of Credits	\$59M	\$198M	\$1,703M

For saline aquifer sequestration, credits would average

(KGS, 2018)

\$47/tonne and generate 42% more in tax credits

Acknowledgements & Disclaimer

Acknowledgements

• The work supported by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant DE-FE0006821, W.L. Watney and Yevhen Holubnyak, Joint PIs. Project is managed and administered by the Kansas Geological Survey/KUCR at the University of Kansas and funded by DOE/NETL and cost-sharing partners.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency.

References

Crabtree, B. and Christensen, J., Economic Analysis: Potential for CO₂-EOR in the MGA Region, GreatPlains Institute , 2012.

Edwards, R. W. K., and Celia, M. A., 2018, Infrastructure to enable deployment of carbon capture, utilization, and storage in the United States: PNAS, v. 115, no. 38. <u>http://www.pnas.org/content/115/38/E8815</u>.

Holubnyak, Eugene, Dubois, Martin, Bidgoli, Tandis, Wreath, Dana, Watney, Lynn, Stover, Susan, Newell, David, Fazelalavi, Fatemeh 'Mina', Hollenbach, Andrew, Jennings, Jeffrey, Steincamp, Christopher, Schremmer, Joseph, Jordan, Brendan, Crabtree, Brad, Christensen, Jennifer, McFarlane, Dane, Doveton, John, Krishnamurthy, Krish, Byron, Makini, and Watts, Kevin. Integrated CCS for Kansas (ICKan) Final Technical Report. United States: N. p., 2018. Web. doi:10.2172/1491482.

U.S. EIA, 2018, Independent statistics & analysis, Kansas state profile and energy estimates: U.S. Energy Information Administration, <u>https://www.eia.gov/state/?sid=KS</u>

